光学领域:用于制造反射率与银镜一样高但不会褪色的镜,还可用于制造其他光学器件,如滤光片、光通信器件等。
其他领域:可用于制造低熔点合金,如 24%铟和 76%镓的合金在室温下为液态,此外,还可用于制造整流器、热敏电阻和光电导体等电气组件。
铟靶是现代电子信息、新能源、高端制造等战略性新兴产业的底层关键材料,其应用深度和广度直接反映一个国家在半导体、显示、光伏等领域的技术水平。由于全球铟资源稀缺(主要伴生于锌矿),且提纯工艺复杂,铟靶的供应链已成为各国关注的重点。未来,随着 5G、AI、新能源汽车等产业的爆发,铟靶的需求将持续增长,同时推动高纯铟(99.999% 以上)制备技术的不断突破。
功率与温度管理
溅射功率:
铟的溅射阈值较低(约 10 eV),起始功率不宜过高(建议从 50 W 逐步递增),避免瞬间过热导致靶材熔融或飞溅(铟熔点仅 156.6℃,过热易造成靶材局部熔化,形成 “熔坑” 影响均匀性)。
直流溅射功率密度通常为 1~5 W/cm²,射频溅射可适当提高至 5~10 W/cm²。
靶材冷却:
采用水冷靶架(水温控制在 15~25℃),确保溅射过程中靶材温度低于 80℃(高温会导致铟原子扩散加剧,影响薄膜结晶质量)。
定期检查冷却水路是否通畅,避免因散热不良导致靶材变形或脱靶。
溅射时间与沉积厚度
厚度监控:使用石英晶体微天平(QCM)实时监测薄膜沉积速率,结合靶材消耗速率(约 0.1~0.5 μm/min,与功率相关),控制溅射时间。
靶材利用率:避免过度溅射导致靶材 “打穿”(剩余厚度<2 mm 时需及时更换),通常平面靶材利用率约 30%~40%,旋转靶可提升至 60% 以上。