热压法:把铟粉末在高温和高压下压制成型,能够提高靶材的致密度和机械强度,同时有助于减少气孔和其他缺陷。
冷等静压法:利用液压介质在室温下对铟粉末施加均匀压力使其成型,可制造出高密度和均匀性的靶材,但需要后续的烧结处理来提高其机械性能。
光伏领域:在薄膜太阳能电池中,铟靶材可作为光吸收层形成用的溅射靶,如 Cu-In-Ga-Se 系(CIGS 系)薄膜太阳能电池,有助于提高太阳能电池的转换效率。
科研与前沿技术
1. 量子计算与超导器件
探索应用:铟薄膜作为超导材料(如 In-Nb 合金),用于量子比特器件的制备,利用其超导电性实现低损耗量子信号传输。
2. 柔性电子与可穿戴设备
技术方向:在柔性电路板(FPC)、电子皮肤中作为可拉伸导电薄膜,利用铟的高延展性满足器件形变需求。
溅射气体控制
气体纯度:使用高纯氩气(99.999% 以上),避免氧气、水汽混入导致铟靶氧化(氧化铟导电性下降,易形成电弧放电)。
气压调节:
直流溅射(DC):气压通常为 0.1~10 Pa,低气压下溅射速率高但薄膜致密度低;高气压下薄膜均匀性好但沉积速率慢。
射频溅射(RF):适用于绝缘基底,气压可略高于直流溅射,需根据薄膜厚度要求动态调整。